Second-order estimates for collapsed limits of Ricci-flat Kähler metrics
نویسندگان
چکیده
Abstract We show that the singularities of twisted Kähler–Einstein metric arising as longtime solution Kähler–Ricci flow or in collapsed limit Ricci-flat Kähler metrics are intimately related to holomorphic sectional curvature reference conical geometry. This provides an alternative proof second-order estimate obtained by Gross, Tosatti, and Zhang (2020, Preprint, arXiv:1911.07315) with explicit constants appearing divisorial pole.
منابع مشابه
ADIABATIC LIMITS OF RICCI - FLAT KÄHLER METRICS 3 from
We study adiabatic limits of Ricci-flat Kähler metrics on a Calabi-Yau manifold which is the total space of a holomorphic fibration when the volume of the fibers goes to zero. By establishing some new a priori estimates for the relevant complex Monge-Ampère equation, we show that the Ricci-flat metrics collapse (away from the singular fibers) to a metric on the base of the fibration. This metri...
متن کاملNumerical Ricci - flat metrics on K 3
We develop numerical algorithms for solving the Einstein equation on Calabi-Yau manifolds at arbitrary values of their complex structure and Kähler parameters. We show that Kähler geometry can be exploited for significant gains in computational efficiency. As a proof of principle, we apply our methods to a one-parameter family of K3 surfaces constructed as blow-ups of the T /Z2 orbifold with ma...
متن کاملRecurrent metrics in the geometry of second order differential equations
Given a pair (semispray $S$, metric $g$) on a tangent bundle, the family of nonlinear connections $N$ such that $g$ is recurrent with respect to $(S, N)$ with a fixed recurrent factor is determined by using the Obata tensors. In particular, we obtain a characterization for a pair $(N, g)$ to be recurrent as well as for the triple $(S, stackrel{c}{N}, g)$ where $stackrel{c}{N}$ is the canonical ...
متن کاملRicci-flat K Ahler Metrics on Canonical Bundles
We prove the existence of a (unique) S-invariant Ricci-flat Kähler metric on a neighbourhood of the zero section in the canonical bundle of a realanalytic Kähler manifold X, extending the metric on X. In the important paper [3], Calabi proved existence of Ricci-flat Kähler metrics on two classes of manifolds: a) cotangent bundles of projective spaces; b) canonical bundles of Kähler-Einstein man...
متن کاملNumerical Ricci - flat metrics on K 3 Matthew
We develop numerical algorithms for solving the Einstein equation on Calabi-Yau manifolds at arbitrary values of their complex structure and Kähler parameters. We show that Kähler geometry can be exploited for significant gains in computational efficiency. As a proof of principle, we apply our methods to a one-parameter family of K3 surfaces constructed as blow-ups of the T /Z2 orbifold with ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian mathematical bulletin
سال: 2023
ISSN: ['1496-4287', '0008-4395']
DOI: https://doi.org/10.4153/s0008439522000765